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Abstract— We apply a direct linearization technique to a class of certain nonlinear n o n -
a u t o n o m o u s  second-order ordinary differential equations with cubic nonlinearities and 
obtained special function solutions of them . 

Index Terms— Nonlinear differential equations, Riccati equation and Special functions  
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1 INTRODUCTION                                                                     

inding solutions of nonlinear differential 
equations in terms of elementary functions 
or special functions has been an interesting 

area of research since 1860 [1], [2]. Very often, we 
come to a situation wherein such exact solvability 
is not possible. Though, an extensive works being 
carried out by many authors by employing various 
techniques including group of symmetries to find 
solutions of ordinary differential equations 
(ODE’s), still a general method is yet to emerge.  
Sophus Lie [3] made an attempt to unify the then 
existing methods of finding solutions through 
symmetry approach. Indeed, he had proposed a 
necessary and sufficient condition for a given 
second-order nonlinear ordinary differential equa-
tions which can be transformed to a linear ordinary 
differential equations through symmetries. For the 
last many years Lie’s approach has been used and 
interesting linearizable equations were obtained. In 
recent years, many authors investigated the inte-
grability/linearizability of many nonlinear second-
order ordinary differential equations through 
Prelle-Singer method [6], [7], [8], [9], [10], [11], 
Jacobi  

 
 

last multiplier method [12], [17], [18], symmetry 
approach [3] etc.. In this paper, we investigate the 
linearization of the nonlinear ODE’s through Ric-
cati equation. In our analysis, we never use either 
first integral or symmetries for linearization. It is 
well-known that Riccati equation 
   

�′��� �  ��������� �  �������� �  ����,   (1) 
 
 
can be linearized through the Cole-Hopf transforma-
tion 

                     ���� � � � �!�
"�!���!�,                    (2)    

 
to a linear second-order ODE of the form  
 
    #$$ ��� � %���#$��� � &���# � 0,                 (3) 
                                            

where %��� � ����� � "′�!�
"�!� , &��� � ��������.  

 
Note that in the above process, the solution of the 
Riccati is expressed through the solution of the 
linear equation. In this paper, we propose to find a 
special class of solutions for many second-order 
nonlinear ordinary differential equations through 
Riccati equation. 

2 METHOD 

Consider the problem of finding special solutions 
of the second-order nonlinear ordinary differen-
tial equation of the form 
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              �$$���  � (��$���, ����, ��,          (4) 
 
where prime denotes the differentiation of � with 
respect to ‘�’. Recently, in a series of papers [6], 
[7] the authors successfully found first integrals  
and obtained  explicit solutions for a class of au-
tonomous nonlinear ODE’s. In [15], [16], Riccati 
equation was used to find special function solu-
tions of Painlevé equations for specific parametric 
restrictions, a non-autonomous nonlinear ODE’s. 
So, the natural question arises whether one 
could construct special function solutions of 
non-autonomous form equations considered in 
[6], [7] 
 
In this paper, we give affirmative answer to this 
question by proposing a direct linearization proce-
dure. Indeed, we find new linearizable time de-
pendent systems. The solutions of them are ex-
pressed in terms of Bessel or elementary func-
tions. Our strategy is the following. We assume 
that ���� is a solution for both (5) and Riccati 
equation (1) simultaneously 
 

�$��� �  ��������� �  ��������  �  ����, 
 
where ����, ���� and ���� are unknown functions to 
be determined. On substituting (1) into (4) one ob-
tains an over-determined system of equations for 
����, ���� and ����. On solving them consistently, 
one can easily find the values of the functions ����, 
���� and ����, together with the parametric restric-
tions of (4), if there are any. It is evident from the 
numerous examples presented below that our ap-
proach is often simple, direct and can be readily ap-
plicable to a wide variety of problems, including 
higher-order nonlinear ODE’s. 

 

Our aim is to employ the  above mentioned  me-
thod  to find explicit solutions  for  certain  class 
of equations  recently  studied  in Refs. [6], [7] 
and [10].  Our investigation reveals a new class of 
non-autonomous form of the equations studied in 
[6], [7] and furthermore, we obtain these equations 
admit new solutions.  

3    EXAMPLES 

 We consider the following integrable equations consi-

dered by Chandrasekar et al. [6], [7]  which are cu-
bic in ����: 
 

  �$$ ��� � ��)���� � ����$��� � �*����* � 
 �+����� � , ���� � 0,                                    (5) 

                     

 �$$��� � ��)���� � ����$��� �  -./
0 ����* �

                          -.-/
* ����� � , ���� � 0,          �6�           

�$$��� � ��)���� � ����$��� �  �23)�-./
� 2/ ����* �

                          -.-/
* ����� � , ���� � 0,         (7) 

 

�$$��� � �)�����$��� �  �*����* �
                                                        , ���� � 0,   (8) 
 

�$$��� � ��)���� � ����$��� � �*����* �
                          -.-/

* ����� � , ���� � 0,         (9) 

 

�$$��� � ���$��� �  �+����� � , ���� � 0, (10) 
 

�$$��� � ��)���� � ����$��� �
                          -.-/

* ����* � , ���� � 0,       (11) 

where �), ��, �*, �+ �
4 , are arbitrary constants. 
 

4  EXAMPLES 

 

Example 1 
 
Now, we generalize the above systems by considering , as a function of  ‘t’. Thus, we have 

 
  �$$ ��� � ��)���� � ����$��� � �*����* � 
                                 �+����� � ,��� ���� � 0,    (12) 
 
We apply the linearization procedure outlined above 

for (12). Differentiate (1) and equate w i t h  (12), we 
get an over-determined s ys t e m  of equations for the 
unknowns.  In this case, we have the following con-
ditions: 

 
           �* � �)���� � 2����� � 0    ,                                                                                       (   1    3)                                                                                                         

                                                                                            
 �+ � ������ � �)���� � 3�������� �
                                         �$��� � 0,          (14)                               

                                                                                              
         ���� � �������� � �$��� �   0  ,       (15)                                     
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,��� � ���� � ����� � �)���� � 2�������� �
                                      �$��� �   0  .                                           (16)    
 

Solving  (13), we get 
 

    ���� � )
+ 7��) 8 9�)� � 8�*; �  χ (say). (17)                                           

 

Substitute (17) into (14) then  we find 

 

    ���� � 3-/<3-=
*<>-. � ? (say).                   (18)                                          

 

Using (18) in (15) we arrive at 

                                                                                                                                                           

            ���� � �)@3�µ!,                            (19)                                                       

 
where 2μ �  ω �   ��  and �) is a constant  of 
integration. Again, we use the values of ����, 
���� and ���� in (16) and find  
                                                                                                                                   

,��� � �?� � ?  �� � �)�2C � �)�@3�µ!.  (20)                            
  

Therefore, we finally arrive at the following Ric-
cati equation:    
 

    �$��� � C ����� � ω���� � �)@3�µ! .        (21)                               
 

Now, (21) can be linearized through  Cole-Hopf 
type of transformation 
 

                ���� � � � �!�
 < ��!� .                                                                                                                                                                                                                                                                                                                                                                    ( 22)                               

                                                                                                                                                                                                                                              
Substituting (22) into (21) one finds, a second-
order linear ordinary differential equation of the 
form  
 

#$$�t� � ω #$�t� � c) χ@3�µ!y�t� � 0. �23�                         
 

Introducing the change of variable � �
 89c) χ  @3µ! in (23), we arrive at the following 

Bessel type of equation 

  #$$�z� � 71 � ω

µ
; �#$��� � I/

µ� #��� � 0.    (24)                  

(24) is a special case of a Bessel’s equation giv-
en in [4] (Eq.(6.88) pp.280). Thus, (12) admits 

Bessel’s function solution. Rational solut ions  
follows from (22). Now, we specialize different 
cases according to different choices of the pa-
rameters. 

 

Example 2 

 

 If  �* � -./
0  and �+ � -.-/

*  then the non-autonomous 

form of  (6) is given by 

 

   �$$ ��� � ��)���� � ����$��� � -./
0 ����* �

                       -.-/
* ����� � ,������� � 0.          �25�       

                                                                                                                                                                                                    
On using the above parametric restrictions in (13), 
(14), (15) and (16) one arrive at two set of values 
for ����, ���� , ���� and ,���. 

 

Case (i): 

 

Consider ���� � � -.
* �  C (say), ���� � ω (arbi-

trary), ���� � �)@3�µ!, ,���  � �?� � ?  �� �
�)�)@�µ!  , where 2µ � �� � ?. Now the Riccati eq-
uation assumes the form    
 

    �$��� � � -.
*  ����� � ω���� � �)@3�µ!.      (26)                                   

 

Though (26) is same form as (21) but with the 
values of χ and ω as given above. Hence, it is 
obvious again to conclude that this Riccati 
also can be identified with Bessel’s equation. 
Thus, (25) admits Bessel’s function solution as 
well. 

 

Case (ii): 

 

Now, consider the case ���� � � -.
K �  C  

(say),  ���� � � -/
*  = ω (say), ���� � �)@�L!  and  

 λ�t� � 2?� � 4�)  C  e�ωO . The corresponding Ric-

cati equation now becomes   
                                                                                                               

       �$��� � C ����� � ω���� � �)@�L! .           �27�                           
                                                                                                                                                  
Using the Cole-Hopf type of transformation (2) 
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in the Riccati (27), we obtain a second-order li-
near ordinary differential equation of the form                              

 

#$$�t� � ω #$�t� � c)  χ@�ωO   y�t� �  0.(28)                                          

 

Introducing the change of variable 
� �  8√c)C  @R!  in (28), we arrive at  

 

                #$$��� � )
R/ #��� � 0 .                                                                                                                                                                                                                        ( 29)                               

 
Solving (29),  we get    

 
   y�z�  � c� cos βz � c*   sin βz,         (30)                                 
 

where W � )
R.  Substituting (32) in (2),  then we get 

the solution of (25) as 
                

���� �
8XY.

< @R! ZY[\]^ �_9Y.< `ab �cY/^de �_9Y.< `ab�
Y/\]^ �_9Y.< `ab �8Y[^de �_9Y.< `ab�f.                   

                                                             (31)        

Equation (31) can be rewritten as   

 

      ���� � 8XY.
< @R! Z)cg !"h �_9Y.< `ab�

g8!"h �_9Y.< `ab� f, (32)                  

 

where  W � )
R   and i � Y/

Y[.       
 

Example 3 

 
Now we consider non-autonomous form of    (7) 

 

�$$ ��� � ��)���� � ����$��� � -.-/
* ����� �

�23)�-./
�2/ ����* � ,������� � 0 .          (33) 

      

Case (i): 

 

Consider ���� � � -.
�2 � C (say), ���� � � -/

* = ω 

(say),  ���� � �)@�R! and ,��� � �-//
0 � 7� �

)
2; �)�)@�R!,  where  � j *

�. In this case, the Riccati 

equation becomes  

 

     �$��� � C ����� � ω���� � �)@�R!  ,          (34)                                        

 

whose solution is 

                 

���� �
8XY.

< @R! ZY[\]^ �_9Y.< `ab �cY/^de �_9Y.< `ab�
Y/\]^ �_9Y.< `ab �8Y[^de �_9Y.< `ab�f.  

                                                                      (35)                          
 

In other words 

                          

���� � 8XY.
< @R! Z)cg !"h �_9Y.< `ab�

g8!"h �_9Y.< `ab� f , �36�                         
 

where  W � *
-/   and i � Y/

Y[.   If � � *
�  then (33) is 

same as (25). 

 

Case (ii): 

 

Now, we take ���� � � �)32�-.
�2 � C (say). In this 

case, we find ���� � � -/
* = ω (say), ���� � �)@�R! 

and � j 3. Here, we obtain the Riccati equation  

 

        �$��� � C ����� � ω���� � �)@�R! ,         �37�                             
 

whose solution is  

 

���� �
8XY.

< @R! ZY[\]^ �_9Y.< `ab �cY/^de �_9Y.< `ab�
Y/\]^ �_9Y.< `ab �8Y[^de �_9Y.< `ab�f. (38) 

                              

Which is nothing but 

                      

���� � 8XY.
< @R! Z)cg !"h �_9Y.< `ab�

g8!"h �_9Y.< `ab� f,   (39)                         

 

where  W � )
R   and i � Y/

Y[.   If � � 3   then (33) is 

same as (25). 

 

Example 4        

 
Our next example is the non-autonomous form of (8): 

 

�$$ ��� � �)�����$��� � �*����* �
                                            ,�������   � 0,  (40) 

62

IJSER



International Journal of Scientific & Engineering Research Volume 6, Issue 3, March-2015                                                                                 
ISSN 2229-5518 

 

IJSER © 2015 

http://www.ijser.org  

, 
 

where �) and �*  are non zero. From (13), (14), (15) 
and (16) we find 

 

   ���� � )
+ 7��) 8 9�)� � 8�*; �  χ (say),    (41)          

                                        
                                       ���� � 0,               (42)                                                 
 
                                          ���� � �),               (43)                                                 
 
where  �) is a constant of integration. Using (41), 
(42) and (43) in (16), we find that 

 
      , � �)�2C � �)�.                           (44)              
 

Thus, the Riccati equation associated with (1) is 
given in the form 

 

        �$��� � C ����� � �).                     (45)                   

 

Equation (45) can be linearizable through  

 

                   ���� � � � �!�
< ��!�                          (46)                          

 

 and obtain  

 

           #$$ ��� � �)C #��� � 0.                  (47)                                   

 
The solution of (47) is 

 

 #��� � �� cos�√�)C �� � �* �
�√�)C ��,  (48)                            
 

where C � )
+ 7��) 8 9�)� � 8�*;. Substituting (48) 

in (46), we obtain the solution 
                       

���� � XY.
< ZY/ ^dek_9Y.<  !l3Y[\]^ �_9Y.<  ! �

Y/ \]^k_9Y.<  ! l>Y[ ^dek_9Y.<  !lf . (49)                    

 

Now, (49) can be rewritten  as                                             

                                   

���� � XY.
< Z3)>g !"h �_9Y.<  !�

g>!"h �_9Y.<  !� f,                 (50)             

 

where  i � Y/
Y[,  which is a solution of (40). 

 

Example 5 

 
    In [7], now we consider the non-autonomous 
equation of equation given in [7] 

 

�$$ ��� � ��)���� � ����$��� � �*����* �
                                      -.-/

* ����� � ,������� � 0.  (51)     

 
By repeating the same steps carried out in the pre-

ceding examples, we arrive at ���� � )
+ 7��) 8

9�)� � 8�*l �  χ (say), ���� � � -/
* = ω (say),  

���� � �)@�R! and ,��� � �-//
0 � �2χ� �)��)@�R! . 

Note that when �) � �2χ, ,��� reduced to the case 
given in [4]. Therefore, our choice of ,��� gives a 
more general form of linear equation. For this new 
linearizable equation we present explicit solution.   
For these values, we get Riccati equation of  the form  

 

    �$��� � C ����� � ω���� � �)@�R!  ,            (52)   
 

which can be linearized  through  Cole-Hopf trans-
formation (2).  Thus, we get a second-order linear 
ordinary differential equation   

 

                  #$$ ��� � )
R/ #��� � 0.            (53)                                     

 
Equation (53) same form as (29) but with differ-
ent  values  of χ and ω. The solution of (52) can 
be expressed as 

           

���� �
XY.

< @R! ZY[\]^ �_9Y.< `ab �cY/^de �_9Y.< `ab�
Y/\]^ �_9Y.< `ab �8Y[^de �_9Y.< `ab�f.        

                                                                             �54�             
This implies 

                      

���� � 8XY.
< @R! Z)cg !"h �_9Y.< `ab�

g8!"h �_9Y.< `ab� f,      (55)                        

 

where  W � )
R   and i � Y/

Y[.       
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Example 6 

 

Now, we consider the non-autonomous form of (10)   

 

�$$ � �� �$ � �+����� � ,������� � 0.      �56�  

 

We get the following Riccati equation     

 

   �$��� � C ����� � ω���� � �)@R!  ,                    (57)              

 
and the second-order linear differential equation is 
given that 

 
  #$$ ��� � ω #$�t� � c)  χeωO  y�t� �  0,  (58)                                         
 

where   χ � 8X3-[
�  ,  ? � c -=

*R ,  ���� � �)@3R!   

and  , � �-=/
0-[ � 2�)?@R!.  (58) can be rewritten  as                                                            

 

          �� m/�
mI/ � 3� m�

mI � +I/
R/ #��� � 0,           (59)                           

 

where � � 8√�)C @3ab
/ . It is again the Bessel’s type 

of equation. Thus, (56) admits Bessel function solu-
tion. 

 

Example 7 

 

Finally, we consider the non-autonomous form of (11) 

 

 �$$ ��� � ��)���� � ����$��� � -.-/
* ����* �

                                                       ,������� � 0.   �60�                           

 
For this equation, w e  can get the Riccati equa-

tion and the corresponding second-order linear 

differential equation as follows: 

 

 �$��� � C ����� � ω���� � �)@3�R>-/�!       (61) 

 

and   

 

  #$$ � ω #$ � c)χe3�ω>-/�Oy�t� �  0,        (62)                     
 

where χ � )
+√* 7�√3�) 8 93�)� � 8�)��;, 

? � � -/<
*<>-. and , � �?� � ��? �

�2C � �)��)@3�R>-/�!. Through a change of variable 

� � √�)C @3�ano/  / �!.  (62) becomes                  
  

�� m/�
mI/ � 71 � �R

R>-/; � m�
mI � +I/

�R>-/�/ #��� � 0,  (63) 

 
which is again a Bessel’s type of equation. 
Therefore, the solution can be expressed in 
terms of Bessel function. 

 

  5 CONCLUSIONS 

 

     In this paper, we have presented particular so-

lutions for certain class of nonlinear non-

autonomous second-order ordinary differential eq-

uations with cubic nonlinearity through direct li-

nearization procedure. We have obtained a large 

class of new solutions for these equations in 

terms of Bessel and elimentary functions. Our fu-

ture plan is to extend this analysis to second-

order nonlinear differential equations with high-

er nonlinearity, coupled systems and higher-

order equations. 
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